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Abstract

Pareto Principle is a statistical method to identify the minority of agents that extent the greatest effect. This principle
promotes a win-win situation for the software projects, several organizations want to predict the number of errors in
software systems, before they are deployed, to gauge the likely delivered quality and maintenance software. Finding
errors in software is a challenging and time and budget consuming task. Minimizing these adverse effects using software
error prediction models via guiding testers with defective parts of software system is an attractive research area. In this
paper explores many aspects of the Pareto Principle and each aspect is related to detecting major error trends in projects,
and examines software error prediction and improve prediction results. And also fuzzy model offers an easy-to-use tool
for error evaluation in software projects. The model lies on fuzzy inference. The fuzzy model for error evaluation in
software projects is an innovative instrument which can be used to forecast project failure. The model used to develop
a software system for evaluating error in an e-testing project, so its applicability was validated.
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I. INTRODUCTION

J.M.Juran is the father of the Pareto Principle in
quality management. He coined the terms vital few and
trivial many as applied to the Pareto Principle.
Fundamentally, the Pareto Principle stresses
concentration on the vital few, not the trivial many. The
historical development of the Pareto Principle
illuminates its application to software quality.

Organizations are still asking how they can
predict the quality of their software before it is used
despite the substantial research effort spent attempting
to find an answer to this question over the last 30
years[16][17][18]. One of the aims of software
engineering activities is, cost effective development of
high quality software systems, that is in the narrowest
sense can be expressed as defect rate of final
product[1][5]. Finding these defects before software
have released is important. A defect found after
delivery is usually more expensive than a defect found
in development phase. Testing is the main activity of
finding defects before software have released and it is
the most challenging and time and budget consuming
task of software life cycle[2][3](4].

We gather and analyze software data to help us
to improve the software engineering process. As we
face increasingly demanding software projects, we need

to understand more precisely what we are doing and
how to improve our effectiveness. This paper first
outlines the principales of data gathering and then
discusses the data gathering process. Data gathering
is expensive and time-consuming. It affects the busiest
people and may even be viewed as personally
threatening. There is also considerable confusion an
what data to gather and how to use it. While all these
factors must be considered, there is no way to learn
how to gather and analyze data without gathering and
analyzing data[8][12].

1.1 The Process of Problem Analysis using Pareto
Principle

In this analysis discusses the need for
quantitative descriptions of software errors and methods
for gathering such data. The software development
cycle is reviewed and the frequency of the errors that
are detected during software development and
independent validation are compared. Data obtained
from validation effort are presented[6][7], indicating the
number of errors in 17 categories and three severity
levels; the inferences that can be drawn from this data
are discussed. Software development organization
collects information on errors and defects for a period
of one year. Some quality problems are uncovered as
software is being developed[13][14][15]. Others are



62 National Journal on Advances in Computing & Management, Vol. 3 No. 2 October 2012

encountered after the software has been released to
its end user. Although hundreds of different errors are
uncovered, all can be traced to the following 17 causes:

Erroneous data accessing (EDA)
Erroneous Arithmatic computations (EAC)
Invalid Timing (IT)

Improper Handling of Intrupts (IHI)

Wrong Constants and Data Value (WCDV)
Incomplete or Erroneous Specification (IES)

Misinterpretation of Customer Communication
(MCC)

8.  International Deviation from Specification (IDS)

N o ok~ whd o~

9.  Violation of Programming Standards (VPS)
10.  Error in Data Representation (EDR)

11, Inconsistant Module Interface (IMI)

12.  Error in Design Logic (EDL)

13.  Incomplete or Erroneous testing (IET)

14. Inaccurate or Incomplete Documentation (1ID)

15. Error in Programming Language Translation of
Design ((PLT)

16.  Ambiguous or Inconsistant Human-Computer
Interface (HCI)

17.  Miscellaneous (MIS).

For computer software, some data of frequency
of occurrence or errors is available. First, Rubey’s
“Quantitative Aspects of Software Validation” data is
presented. Tablel shows the basic Causes Error
Categories for Software. Then for the major causes the
common symptoms are shown in the Tables 2,3,4,5.

Software reliability personnel can draw several
inferences from the data in Table3. First, there is no
single reason for unreliable software, and no single
validation tool or technique is likely to detect all types
of errors. Second, the ability to demonstrate a
program’s correspondence to its specification does not
justify complete confidence in the program’s
correctness, since a significant number of errors could
be due to an incomplete or erroneous specification, and
the documentation of the program cannot always be
trusted. Third, intentional deviation from specification
and the violation of established programming standards
more often leads to minor errors than to serious errors.
On the other hand, invalid timing or improper handling
of interrupts almost always results in a significant
error[19]20][21].

The data presented in Table 1 summarize the
errors found in independent validations. In practice,
however, the organization responsible for independent
validation does not wait until the developer has
completed  program  debugging. Instead, the
independent validation organization often becomes
involved at each program development phase to check
that intermediate products(such as the program
specification and program design) are correct. The
errors occurring in the categorization of Table2,
incomplete or erroneous specifications, indicate either
deficiencies in, or the absence of, the verification of
the program specification or program design, since
there should be no errors in the final programs
attributable to program specification if the preceding
verification efforts were perfect.

As shown in Table2, 19 seriousand 82 moderate
errors have escaped the verification efforts and have
been found only during the checking of the actual
coding. In 239 additional cases, errors due to
incomplete or erroneous specification are considered of
minor consequence; this is largely because the coding
had been implemented correctly even though the
program specification is itself in error.

If all of the 239 minor erroneous or incomplete
specification errors were faithfully translated into coding,
the total number of serious errors in the resultant
coding would be 84 and the total number of moderate
errors would be 162. Only 94 of the 239 minor errors
would remain minor errors, even if the coding
implemented the erroneous specification.This would
make the incomplete or erroneous specification error
category in Table 2 the largest error source by a factor
of two, and would increase the total number of serious
errors by 38 percent and the total number of moderate
errors by 12 percent. Verification of the program
specification and design in Advance of coding and
debugging is a very beneficial activity, and indeed is
probably essential if reliable software is desired.

To apply statistical SQA, Table 1 is built. In this
table IES, MCC, EDA, EAC, and EDR are the vital few
causes that accounted or 53 percent of all errors. It
should he noted, however, that IES,EDR,PLT, and EDL
would be selected as the vital few causes if only
serious errors are considered. Once the vital few
causes are determined, the software development
organization can begin corrective action. For example,
to correct MCC, the software developer might
implement facilitated application To improve the quality
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of customer communication and specification. To
improve EDR, the developer might acquire specification
techniques CASE tools for data modeling and perform

more stringent data design reviews. It is important to

Table 1. Basic Causes Error Categories for Software
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note that corrective action focuses primarily on the vital
few. As the vital few causes are corrected, new
candidates pop to the top of the stack.

Error Total Serious Moderate Minor
NO. % NO. % NO. % NO. %
EDA 120 8 36 16 72 12 12 2
EAC 113 7 22 10 73 12 18 3
IT 44 3 14 25 4 5 1
HI 46 3 14 31 5 1 0
WCDV 41 3 14 6 19 3 8 1
IES 340 22 34 14 68 11 100 21
MCC 156 10 12 5 68 11 76 17
IDS 48 3 1 1 24 4 23 5
VPS 25 2 0 0 15 3 10 2
EDR 130 8 26 11 68 11 36 7
IMI 58 4 9 4 18 3 31 7
EDL 139 9 14 6 12 2 19 4
IET 95 6 12 5 35 6 48 10
IID 36 2 2 2 20 4 14 3
PLT 60 4 15 6 19 3 26 6
HCI 28 2 3 2 17 3 8 2
MIS 56 4 0 0 15 3 41 9
Totals 1535 100 228 100 599 100 476 100
Table 2. Common Symptoms for Software Errors: Incomplete or Erroneous Specifications
Error Category Minor Error | Moderate Error | Serious Error | Total Error
Dimensional Error (DE) 17 17 7 41
Insufficient Precision Specified (IPS) 4 11 0 15
Missing Symbols or Labels (MS) 4 0 0 4
Typographical Error (TE) 51 0 0 51
Incorrect Hardware Description(IHD) 1 3 3 7
Design Consideration Incomplete or 122 47 8 177
Incorrect(DClI)
Ambiguity in Specification or Design(ASD) 40 4 1 45
Total 239 82 19 340
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Table 3. Common Symptoms for Software Errors: Erroneous Data Accessing
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Error Category Minor Error | Moderate Error | Serious Error | Total Error

Fetch or Store Wrong Data Word (FWDW) 10 52 17 79
Fetch or Store Wrong Portion of Data Word 0 0 10 10
(FWPDW)

Variable Equated to Wrong Location (VEWL) 0 6 4 10
Overwrite of Data Word (ODW) 2 4 4 10
Register Loaded with Wrong Data (RLWD) 0 10 1 11
Total 12 72 36 120

Table 4. Common Symptoms for Software Errors: Erroneous Decision Logic or Sequencing

Error Category Minor Error | Moderate Error | Serious Error | Total Error

Label Placed on Wrong Instruction/Statement 0 0 2 2
(LPWI)

Branch Test Incorrect (BTI) 3 15 10 28
Branch Test Set Up Incorrect (BTSI) 0 1 1 2
Computations Performed in Wrong Sequence 6 2 1 9
(CPWS)

Logic Sequence Incorrect (LSI) 6 65 27 98
Total 15 83 41 139

Table 5. Common Symptoms for Software Error :Erroneous Arithmetic Computation

Error Category Minor | Moderate | Serious | Total
Wrong Arithmetic Operations Performed (WAOP) 10 47 12 69
Loss of Precision (LP) 2 6 1 9
Overflow (OF) 2 3 3 8
Poor Scaling of Intermediate Results (PSIR) 3 16 4 22
Incompatible Scaling (IS) 1 2 2 5
Total 18 73 22 113
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ll. ESTIMATION OF PHASE AND ERROR INDEX

In conjunction with the collection of defect
information, we can calculate an Error index (El) for
each major step in the software engineering process.
After analysis, design, coding, testing, and release, the
following data are gathered: PI = w1*SiEi +
w2*MI/Ei + w3*Ti/Ei where Ei = the total number of
errors uncovered during the ith step in the software
engineering process, Si= the number of serious error,
Mi= the number of moderate errors, Ti= the number
of minor errors, PS= size of the product, wj=
weighting factor, j= 1 to 3. The defective index (El)
is computed by calculating the cumulative effect or
each Pli weighting errors encountered later in the
software engineering process more heavily than those
encountered earlier.

Table 6. Phase Index for Basic Error Categories
for Software

PI(EDA)
PI(EAC)
PI(IT)
PI(IHI)
PI(WCDV)
PI(IES)
PI(MCC)
PI(IDS)
PI(VPS)
PI(EDR)
PI(IMI)
PI(EDL)
PI(ET)
PI(IID)
PI(PLT)
PI(HCI)
PI(MIS)
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Error Index for Basic Error Categories for
Software

17
El=( Y, iP1)/PS=017=17%
i=1

Table 7. Phase Index for Common Symptoms
for Software Error :Incomplete or Erroneous

PI(DE) 3.36
PI(IPS) 247
PI(MS) 1

PI(TE) 1

PI(IHD) 5.72
PI(DC) 194
PI(ASD) 138

7
El=( Y, iPI)/PS=0.19=19%
i=1

Table 8. Phase Index for Common Symptoms
for Software Error: Erroneous Data Accessing

PI(FWDW) 4.25
PI(FWPDW) 10
PI(VEWL) 58
PI(ODW) 54
PI(RLWD) 3.64
5

El=( Y iPl)y/PS=0.68=68%

i=1

Table 9. Phase Index for Common Symptoms
for Software Error: Erroneous Decision Logic or

Sequencing
PI(LPWI) 10
PI(BTI) 5.29
PI(BTSI) 8.5
PI(CPWS) 245
PI(LSI) 6.03
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5
El=( Y, iPl)/=062=62%
i=1

Table 10. Phase Index for Common Symptoms
for Software Error: Erroneous Arithmetic

Computation
PI(WAOP) 3.92
PI(LP) 3.33
PI(OF) 5.13
PI(PSIR) 4.01
PI(IS) 54

5
El=( Y, iPi)/PS=0.61=61%

i=1

IV. FUZZY MODEL FOR ERROR EVALUATION IN
SOFTWARE PROJECTS

The proposed fuzzy model brings a solid
contribution to error management by adapting existent
techniques in errors evaluation to research projects.
The model has important stages: error identification
from an expert database, using building model
components for fuzzy inference. The model allows error
quantification by knowing the crisp values of error
sources. Thanks to fuzzy logics mechanisms, the result
has a higher estimation value[22][23].

4.1. Model Components for Fuzzy Inference

The proposed model for error evaluation in
research projects has typical components of a fuzzy
model: input variable, fuzzy rules[23]. The rules used
in fuzzy risks modelling are built on the two well-known
concepts from errors management (probability of error
occurance and impact of it on project development) and
an primary causes of errors. The model can be
generally stated as: “The more over-budget is and the
more embedded quality of the software development
project idea, the lower the degree of error encountered
in the software project.”

Usually fuzzy models are used in decision making
and they offer two types of answers: the error can be
either accepted or rejected. The proposed model offers
only a quantitative value of error, because the decision

of accepting the error is taken by the human agent:
project manager, errors manager or any other
stakeholder. In conclusion, the output of the developed
model isn't a form of decision, but an important
parameter to make a proper decision[22]. The model
components are further described, using fuzzy
formalization.

4.2 Input Variables

The model has two forms of input variables: input
functions and input constants. Input functions have the
form of:

P(err) = probability of phase index error occurance
l(err) = impact of error index on software project
Where err = considered error code

They are described in Table 11, according to
fuzzy logics concepts.

Table 11. Input Variables Description in Error
Analysis Model

Fuzzy | Universe
Variable of
Name | Discourse

Per) | [0,100]%

Linguistic Grades

VL(very low), L(low),
M(medium), H(high),
VH(very high)

I(err) [0,70] VL(very low), L(low),
M(medium), H(high),

VH(very high)

Input constants have the form of:

ErrCause 1 cause 1 of Err occurance

ErrCause 2 cause 2 of Err occurrence

Where Err = considered error code

They are described in the same manner as input
functions, the only difference being the defined universe
of discource: it is specific to each identified cause.

4.3 Output Variables

The output variable is the value for an identified
error and is denoted as: It is described in table 12
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Table 12. Output variables description in error
analysis model

Fuzzy | Universe
variable of
name | Discourse

VEM | [0,10]

Linguistic Grades

VL(verylow), L(low),

67

Table 13. Inference Rules for Analysis Error
“Err” in software projects

P(Er) | VL L M H VH
/I(Err)
VL | VL | Somewhat [ L | Somewhat |Very H

VL L M H VH

Fig. 1. Fuzzy Sets Representationm for Error Value
in Software Projects

4.4 Model Rules

The error evaluation model consists from a set
of predefined rules for establishing error value in
software projects. These inference rules are mentioned
in Table 13. The connective used to bind conditions in
rules is “and”. Besides the linguistic values of model
variables (VL, L, M, H and VH), some restrictors are
used:

e “somewhat’ =%p

o ‘very’ =pn2

Where p is the function showing if a numeric
value belongs to a fuzzy set and it has values between
0 and 1 (a greater value shows a stronger
membership).

M(medium), H(high), vt M
VH(very high) L L H VH
M M M M H VH
H H [ Very H VH
VH | VH VH VH H Very

VH

If error Err has a high probability of occurance
and the impact of this error is very high, then its value
is also very high. (see the underlined values from table
13)

4.5 Formalization of Error Evaluation Model for
E-testing Software Project

In order to compute the probability of “Lack of
qualityresults” error (notated “P(Err)’), low embedded
quality of the idea is reflected in “Phaselndex” variable
and over-budget sum in “Errorindex” variable. Both
variables are defined in table 14. Inference rules for
showing the effect of “LowQAldea” and “OverBudget’
changes on “Err” value are presented in table 15.

Table 14. Fuzzy variables for computing error in

e-testing
Fu.zzy Variable Universe Linguistic
Variable Tvoe of Grades
Name yp Discourse
Phaselndex Input [0,10] |VLLMH,VH
Errorindex Input [0,70] VL,L,M,H,VH
P(Err) input [0,100] |VL,L,M,H,VH
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Table 15. Inference rules for computing “P(Err)”
in e-testing software project

Phase VL L M| H VH
Ind /
Errindex
VL |Somewhat |Somewhat| L | VL |Very VL
M M
L H H L [VL VL
M VH H M
VH VH H|M
VH VH VH v
H

V. SUMMARY AND CONCLUSION

Software process data is gathered to learn how
to make process improvements. The principles of
successful data gathering are: The data is gathered
with a specific objective; the choice of data is based
on a model of the process being examined; the data
gathering process itself is defined and managed. It is
tailored to the needs of the organization, and it must
have management support. The data gathering plan
specifies who will use the data and how it will be used.
It covers why the data is needed, the data
specifications, who will gather it and how, and how it
will be validated and managed. A broad survey of the
Pareto Analysis was presented. This included some
historical perspective leading to the use of the Pareto
Analysis as an effective quality tool for detecting major
error trends during the development of software
projects. Extensions of the Pareto Principle to software
have been drawn from the areas of error identification,
inspections, and statistical techniques.

The error index for Basic Error Categories for
Software is less than the Common Symptoms for
Software errors like Incomplete or Erroneous
Specification, Erroneous Data Accessing, Erroneous
Decision Logic or Sequencing and Erroneous Arithmetic
Computation as estimated. The phase index and error
index can be used in conjunction with information
collected in Table 1,2,3,4,5 to develop an overall
indication of improvement in software quality. We
calculated phase index as shown in Table 6,7,8,9,and
10. The Pareto analysis can be summarized as
experienced industry practitioners agree that most really

difficult defects can be traced to a relatively limited
number of root causes. In fact, most practitioners have
an intuitive feeling for the “real” causes of software
quality problems, but few have spent time collecting
data to support their feelings. The vital few causes for
errors can be isolated and appropriate corrections can
be made. The proposed model offers an easy-to-use
tool for error evaluation in software projects. Software
projects are known for their high level of error, very
few dedicated error systems were developed especially
for them. Therefore, the fuzzy model for error
evaluation in software projects is an innovative
instrument which can be used to forecast project
failure. The model was used to develop a software
system for evaluating error in an e-testing software
project, so its applicability was validated. The system
can be further developed to evaluate all errors, not only
the one from the highest level, as it does now.
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